本文提出了2022年访问量的挑战的最终结果。 OOV竞赛介绍了一个重要方面,而光学角色识别(OCR)模型通常不会研究,即,在培训时对看不见的场景文本实例的识别。竞赛编制了包含326,385张图像的公共场景文本数据集的集合,其中包含4,864,405个场景文本实例,从而涵盖了广泛的数据分布。形成了一个新的独立验证和测试集,其中包括在训练时出词汇量不超出词汇的场景文本实例。竞争是在两项任务中进行的,分别是端到端和裁剪的文本识别。介绍了基线和不同参与者的结果的详尽分析。有趣的是,在新研究的设置下,当前的最新模型显示出显着的性能差距。我们得出的结论是,在此挑战中提出的OOV数据集将是要探索的重要领域,以开发场景文本模型,以实现更健壮和广义的预测。
translated by 谷歌翻译
我们提出了一种用于场景文本视觉问题的新型多模式架构(STVQA),命名为布局感知变压器(LatR)。 STVQA的任务需要模型以推理不同的方式。因此,我们首先调查每种方式的影响,并揭示语言模块的重要性,尤其是在丰富布局信息时。考虑到这一点,我们提出了一种客观预培训计划,只需要文本和空间线索。我们表明,尽管域间隙差距,但仍然对扫描文件进行了对扫描文件的培训方案具有某些优点。扫描的文档易于采购,文本密集并具有各种布局,帮助模型通过捆绑语言和布局信息来学习各种空间线索(例如,下面等等)。与现有方法相比,我们的方法执行无词汇解码,如图所示,概括到超出培训词汇。我们进一步证明Latr改善了对OCR错误的鲁棒性,在STVQA失败的常见原因。另外,通过利用视觉变压器,我们消除了对外部物体检测器的需求。 Latr在多个数据集上赢得最先进的STVQA方法。特别是+ 7.6%的TextVQA,ST-VQA上的10.8%,+ 4.0%在OCR-VQA(所有绝对精度数字)。
translated by 谷歌翻译
利用卷积层的特征,神经网络对于模式识别任务非常有效。然而,在某些情况下,他们的决定基于意外信息,导致标准基准的高性能,而且还缺乏挑战测试条件和不行性失败的普遍性。最近的工作已被称为“快捷方式学习”并解决了它在多个域中的存在。在文本识别中,我们揭示了另一个这样的快捷方式,从而识别员依赖于本地图像统计信息。由此激励,我们建议一种方法来规范依赖于局限性统计的依赖,提高文本识别性能。我们称为TextAdain的方法在特征映射中创建了本地扭曲,这阻止网络从局部统计到局部统计。它通过将每个特征映射视为一个元素序列,并且故意在迷你批处理中的元素之间故意不匹配的细粒度特征统计信息。尽管TextAdain的简单性,但与其他更复杂的方法相比,广泛的实验表明其有效性。 TextAdain在标准手写文本识别基准上实现最先进的结果。此外,它概括为多个架构和场景文本识别域。此外,我们证明整合TextAdain改善了更具挑战性测试条件的鲁棒性。
translated by 谷歌翻译
Neural Representations have recently been shown to effectively reconstruct a wide range of signals from 3D meshes and shapes to images and videos. We show that, when adapted correctly, neural representations can be used to directly represent the weights of a pre-trained convolutional neural network, resulting in a Neural Representation for Neural Networks (NeRN). Inspired by coordinate inputs of previous neural representation methods, we assign a coordinate to each convolutional kernel in our network based on its position in the architecture, and optimize a predictor network to map coordinates to their corresponding weights. Similarly to the spatial smoothness of visual scenes, we show that incorporating a smoothness constraint over the original network's weights aids NeRN towards a better reconstruction. In addition, since slight perturbations in pre-trained model weights can result in a considerable accuracy loss, we employ techniques from the field of knowledge distillation to stabilize the learning process. We demonstrate the effectiveness of NeRN in reconstructing widely used architectures on CIFAR-10, CIFAR-100, and ImageNet. Finally, we present two applications using NeRN, demonstrating the capabilities of the learned representations.
translated by 谷歌翻译
A core process in human cognition is analogical mapping: the ability to identify a similar relational structure between different situations. We introduce a novel task, Visual Analogies of Situation Recognition, adapting the classical word-analogy task into the visual domain. Given a triplet of images, the task is to select an image candidate B' that completes the analogy (A to A' is like B to what?). Unlike previous work on visual analogy that focused on simple image transformations, we tackle complex analogies requiring understanding of scenes. We leverage situation recognition annotations and the CLIP model to generate a large set of 500k candidate analogies. Crowdsourced annotations for a sample of the data indicate that humans agree with the dataset label ~80% of the time (chance level 25%). Furthermore, we use human annotations to create a gold-standard dataset of 3,820 validated analogies. Our experiments demonstrate that state-of-the-art models do well when distractors are chosen randomly (~86%), but struggle with carefully chosen distractors (~53%, compared to 90% human accuracy). We hope our dataset will encourage the development of new analogy-making models. Website: https://vasr-dataset.github.io/
translated by 谷歌翻译
Micron-scale robots (ubots) have recently shown great promise for emerging medical applications, and accurate control of ubots is a critical next step to deploying them in real systems. In this work, we develop the idea of a nonlinear mismatch controller to compensate for the mismatch between the disturbed unicycle model of a rolling ubot and trajectory data collected during an experiment. We exploit the differential flatness property of the rolling ubot model to generate a mapping from the desired state trajectory to nominal control actions. Due to model mismatch and parameter estimation error, the nominal control actions will not exactly reproduce the desired state trajectory. We employ a Gaussian Process (GP) to learn the model mismatch as a function of the desired control actions, and correct the nominal control actions using a least-squares optimization. We demonstrate the performance of our online learning algorithm in simulation, where we show that the model mismatch makes some desired states unreachable. Finally, we validate our approach in an experiment and show that the error metrics are reduced by up to 40%.
translated by 谷歌翻译
A master face is a face image that passes face-based identity authentication for a high percentage of the population. These faces can be used to impersonate, with a high probability of success, any user, without having access to any user information. We optimize these faces for 2D and 3D face verification models, by using an evolutionary algorithm in the latent embedding space of the StyleGAN face generator. For 2D face verification, multiple evolutionary strategies are compared, and we propose a novel approach that employs a neural network to direct the search toward promising samples, without adding fitness evaluations. The results we present demonstrate that it is possible to obtain a considerable coverage of the identities in the LFW or RFW datasets with less than 10 master faces, for six leading deep face recognition systems. In 3D, we generate faces using the 2D StyleGAN2 generator and predict a 3D structure using a deep 3D face reconstruction network. When employing two different 3D face recognition systems, we are able to obtain a coverage of 40%-50%. Additionally, we present the generation of paired 2D RGB and 3D master faces, which simultaneously match 2D and 3D models with high impersonation rates.
translated by 谷歌翻译
Though many algorithms can be used to automatically summarize legal case decisions, most fail to incorporate domain knowledge about how important sentences in a legal decision relate to a representation of its document structure. For example, analysis of a legal case summarization dataset demonstrates that sentences serving different types of argumentative roles in the decision appear in different sections of the document. In this work, we propose an unsupervised graph-based ranking model that uses a reweighting algorithm to exploit properties of the document structure of legal case decisions. We also explore the impact of using different methods to compute the document structure. Results on the Canadian Legal Case Law dataset show that our proposed method outperforms several strong baselines.
translated by 谷歌翻译
The use of needles to access sites within organs is fundamental to many interventional medical procedures both for diagnosis and treatment. Safe and accurate navigation of a needle through living tissue to an intra-tissue target is currently often challenging or infeasible due to the presence of anatomical obstacles in the tissue, high levels of uncertainty, and natural tissue motion (e.g., due to breathing). Medical robots capable of automating needle-based procedures in vivo have the potential to overcome these challenges and enable an enhanced level of patient care and safety. In this paper, we show the first medical robot that autonomously navigates a needle inside living tissue around anatomical obstacles to an intra-tissue target. Our system leverages an aiming device and a laser-patterned highly flexible steerable needle, a type of needle capable of maneuvering along curvilinear trajectories to avoid obstacles. The autonomous robot accounts for anatomical obstacles and uncertainty in living tissue/needle interaction with replanning and control and accounts for respiratory motion by defining safe insertion time windows during the breathing cycle. We apply the system to lung biopsy, which is critical in the diagnosis of lung cancer, the leading cause of cancer-related death in the United States. We demonstrate successful performance of our system in multiple in vivo porcine studies and also demonstrate that our approach leveraging autonomous needle steering outperforms a standard manual clinical technique for lung nodule access.
translated by 谷歌翻译
The field of emergent communication aims to understand the characteristics of communication as it emerges from artificial agents solving tasks that require information exchange. Communication with discrete messages is considered a desired characteristic, for both scientific and applied reasons. However, training a multi-agent system with discrete communication is not straightforward, requiring either reinforcement learning algorithms or relaxing the discreteness requirement via a continuous approximation such as the Gumbel-softmax. Both these solutions result in poor performance compared to fully continuous communication. In this work, we propose an alternative approach to achieve discrete communication -- quantization of communicated messages. Using message quantization allows us to train the model end-to-end, achieving superior performance in multiple setups. Moreover, quantization is a natural framework that runs the gamut from continuous to discrete communication. Thus, it sets the ground for a broader view of multi-agent communication in the deep learning era.
translated by 谷歌翻译